Расчет длин сторон:
АВ =
√((Хв-Ха)²+(Ув-Уа)²)
= √32 ≈ 5.656854249,
BC =
√((Хc-Хв)²+(Ус-Ув)²)
= √128 ≈11.3137085,
AC =
√((Хc-Хa)²+(Ус-Уa)²)
= √160 ≈12.64911064.
Отсюда видим, что треугольник прямоугольный - сумма квадратов двух сторон (32+128=160) равна квадрату третьей стороны (160).
Точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, - это центр описанной окружности.
В прямоугольном треугольнике центр описанной окружности находится на середине гипотенузы. У нас это АС.
Находим координаты точки О как середины отрезка АС:
О((-4+8)/2=2; (3-1)/2=1) = (2; 1).
Ответ: точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, имеет координаты (2; 1).
p.s. В общем случае надо было находить уравнения срединных перпендикуляров (достаточно двух), затем найти точку их пересечения.