В прямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3. найти площадь...

0 голосов
38 просмотров

В прямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3. найти площадь треугольника?


Геометрия (12 баллов) | 38 просмотров
0

Найти площадь треугольника или что то дугое ????

Дан 1 ответ
0 голосов

В прямоугольном треугольнике abc гипотенуза ab=5 тангенсом угла =3.
найти площадь треугольника?
Зная tga=3 легко найти cosa и sina
cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10)
sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10)
Соседний катет AC равен
IACI=IABI*cosa=5*1/корень(10)=корень(10)/2
Площадь треугольника равна
S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75

Второй вариант
Обозначим прямоугольный треугольник как АВС где угол С-прямой
АС=5-гипотенуза ВС и АВ -катеты 
tga = ВС/AC =3 или ВС =3АС
Пусть АС =х
Тогда ВС=3х
По теореме Пифагора
АС^2+BC^2=AB^2
x^2+9x^2=25
10x^2=25
x=корень(2,5)
Поэтому катеты равны
AC=корень(2,5)
ВС=3корень(2,5)
Площадь треугольника равна
S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75

(11.0k баллов)