Получили уравнение эллипса в каноническом виде.
Найдем точки пересечения его и прямой:
![image](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D++x%5E2%2B2%28y%2B2%29%5E2%3D4+%5C%5C+5y%2B4%3D0+%5Cend%7Bmatrix%7D%5Cright.+%3C%3D%3E+%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D++y%3D-4%2F5+%5C%5C+x%5E2%2B2%28-4%2F5%2B2%29%5E2%3D4+%5Cend%7Bmatrix%7D%5Cright.+%3C%3D%3E+%5C%5C%0A%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D++y%3D-4%2F5+%5C%5C+x%5E2%3D%5Cfrac%7B28%7D%7B25%7D+%5Cend%7Bmatrix%7D%5Cright.+%3D%3E%0A%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D++x_1%3D-%5Cfrac%7B2%5Csqrt7%7D%7B5%7D+%5C%5C+y_1%3D-%5Cfrac%7B4%7D%7B5%7D+%5Cend%7Bmatrix%7D%5Cright.+%5C+%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D++x_2%3D%5Cfrac%7B2%5Csqrt7%7D%7B5%7D+%5C%5C+y_2%3D-%5Cfrac%7B4%7D%7B5%7D+%5Cend%7Bmatrix%7D%5Cright.+)
\left\{\begin{matrix} y=-4/5 \\ x^2+2(-4/5+2)^2=4 \end{matrix}\right. <=> \\
\left\{\begin{matrix} y=-4/5 \\ x^2=\frac{28}{25} \end{matrix}\right. =>
\left\{\begin{matrix} x_1=-\frac{2\sqrt7}{5} \\ y_1=-\frac{4}{5} \end{matrix}\right. \ \left\{\begin{matrix} x_2=\frac{2\sqrt7}{5} \\ y_2=-\frac{4}{5} \end{matrix}\right. " alt="\left\{\begin{matrix} x^2+2(y+2)^2=4 \\ 5y+4=0 \end{matrix}\right. <=> \left\{\begin{matrix} y=-4/5 \\ x^2+2(-4/5+2)^2=4 \end{matrix}\right. <=> \\
\left\{\begin{matrix} y=-4/5 \\ x^2=\frac{28}{25} \end{matrix}\right. =>
\left\{\begin{matrix} x_1=-\frac{2\sqrt7}{5} \\ y_1=-\frac{4}{5} \end{matrix}\right. \ \left\{\begin{matrix} x_2=\frac{2\sqrt7}{5} \\ y_2=-\frac{4}{5} \end{matrix}\right. " align="absmiddle" class="latex-formula">
Получили две точки пересечения:
Иллюстрация во вложении.