1) y = lg(x^2+x-2)
x^2+x-2 > 0
• x^2+x-2 = 0
• D = 1^2-4×1×(-2) = 1+8 = 9 D^(1/2) = 3
• x[1] = (-1-3)/2 = -2
• x[2] = (-1+3)/2 = 1
D(f) = (-∞;-2)U(1;+∞)
2) log[3/5](3,07); log[3/5](3,7)
log[3/5](3,07) ≈ -2,2
log[3/5](3.7) ≈ -2,6
-2,2 > -2,6
log[3/5](3,07) > log[3/5](3,7)
3) log[1/2](x) < (1/2)x-2
y = log[1/2](x)
y = (1/2)x-2
x = 2