Конькобежец хочет въехать ** ледяную горку, разогнавшись перед ней до скорости 28,8 км/ч...

0 голосов
107 просмотров

Конькобежец хочет въехать на ледяную горку, разогнавшись перед ней до скорости 28,8 км/ч и продолжая работать ногами. На какую высоту от начального уровня поднимется конькобежец, если высота горки увеличивается на 0,5 м на каждые 10 м пути по горке? Коэффициент трения коньков о лед 0,02?


Физика (151 баллов) | 107 просмотров
0

Ну оооочень странная задача.I. Если конькобежец едет «продолжая работать ногами», то, стало быть, он – ЧТО? Стало быть, он создаёт некоторую СИЛУ ТЯГИ – F ! Как же предлагается её искать? Единственное, что представляется возможным – найти её, исходя из того, что известна предельная скорость, которую может развивать конькобежец и, учтя сопротивление воздуха конькобежцу, являющееся основным препятствием, которое преодолевает конькобежец, создавая силу тяги.

0

II. Второй неприятный момент. Как плоскость переходит в горку? По смычке? Какого радиуса смычка? Единственное, что представляется возможным – найти изменение скорости конькобежца на смычке с учётом трения и рассмотреть предельный случай, когда радиус смычки стремится к нулю.

Дан 1 ответ
0 голосов
Правильный ответ

Запишем второй закон Ньютона для горизонтального участка:

F – Fсопр – Fтр = 0 ,      если движение равномерно, где F – сила тяги конькобежца.

F = СSρu²/2 + μmg ,      где ρ – плотность воздуха, u, S и С – предельная скорость, площадь сечения и характерный коэффициент сопротивления конькобежца.

Запишем второй закон Ньютона для смычки:

v' = ( F – Fсопр – Fтр – mgsinφ ) / m    ,       где φ – текущий угол поворота на смычке; в данном случае Fтр = μN > μmg ! поскольку давление на смычке может быть заметно выше!

Нормальное ускорение в данном случае:

a = v²/R ,     которое обеспечивается реакцией смычки N за вычетом поперечной к смычке составляющей силы тяжести :

mv²/R = N – mgcosφ ,     где φ – текущий угол поворота на смычке.

N = mv²/R + mgcosφ ;

Fтр = μN = μmv²/R + μmgcosφ ;

v' = ( F – СSρv²/2 – μmv²/R – μmgcosφ – mgsinφ ) / m   ;

s'' = F/m – ( СSρ/[2m] + μ/R )s'² – μgcos(s/R) – gsin(s/R) ;

Данное нелинейное дифференциальное уравнение в элементарных функциях не решается. Для решения можно сделать некоторые пренебрежения.

Положим некоторые не значительно-переменные на смычке величины – постоянными:

μgcos(s/R) ≈ μgcos(φo/2),

gsin(s/R) ≈ gsin(φo/2),     где φo – угол наклона наклонной плоскости, тогда:

v' = [ F/m – μgcos(φo/2) – gsin(φ/o) ] – ( СSρ/[2m] + μ/R )v² ;

Поскольку мы будем устремлять R к нолю, то:

| F/m – μgcos(φo/2) – gsin(φ/o) | << ( СSρ/[2m] + μ/R )v² ,       а кроме того:<br>
СSρ/[2m] << μ/R ,      окончательно:<br>
v' = –μv²/R ;

Rdv/v² = –μdt ;

R/v – R/Vo = μt ;

R/v = R/Vo + μt ;

v = 1/[ 1/Vo + μt/R ] ;

ds = 1/[ 1/Vo + μt/R ] dt = [R/μ] d( 1/Vo + μt/R )/[ 1/Vo + μt/R ] ;

s = [R/μ] ln| Vo ( 1/Vo + μt/R ) | = [R/μ] ln|Vo/v| ;

v = Vo exp(–μs/R) = Vo exp(–μφ)        – это будет скорость конькобежца после смычки.

Теперь запишем третий Закон Ньютона на наклонном участке:

v' = F/m – Fсопр/m – μgcosφ – gsinφ ;

F = СSρu²/2 + μmg ;

v' = – СSρv²/[2m] – ( gsinφ – СSρu²/[2m] – μg(1–cosφ) ) ;

Обозначим ускорение возвратных бесскоростных сил,
как b = gsinφ – СSρu²/[2m] – μg(1–cosφ) ,

а величину 2m/[СSρ] = L – как тормозную константу, тогда:

v' = – v²/L – b ;

dv/[ v²/L + b ] = –dt ;

dv/[ v²/(bL) + 1 ] = –bdt ;

d(v/√[bL]) / [ (v/√[bL])² + 1 ] = – √[b/L] dt ;

arctg(v/√[bL]) – arctg(V/√[bL]) = √[b/L] t ;

arctg(V/√[bL]) = arctg(v/√[bL]) – √[b/L] t ;

V/√[bL] = tg( arctg(v/√[bL]) – √[b/L] t ) ;

V = √[bL] tg( arctg(v/√[bL]) – √[b/L] t ) ;

ds = √[bL] tg( arctg(v/√[bL]) – √[b/L] t ) dt =
= – L tg( arctg(v/√[bL]) – √[b/L] t ) d( arctg(v/√[bL]) – √[b/L] t ) ;

s = L ln| cos( arctg(v/√[bL]) – √[b/L] t ) / cos( arctg(v/√[bL]) ) | ;

s = L ln| √[1+v²/(bL)] / √[1+V²/(bL)] | ;

Когда скорость V станет равна нулю – это и будет наивысшая точка:

s = L ln√[1+v²/(bL)] = L ln√[1+Vo²exp(–2μφ)/(bL)] ;

H = s sinφ ;

sinφ = h/so ,     где h и so – эталонные высоты и смещения, характеризующие наклон горки;

1–cosφ = 1 – √[1–(h/so)²] ≈ [1/2] (h/so)²,     где h и so – эталонные высоты и смещения, характеризующие наклон горки;

H = [s/so] h = [h/so] L ln√[1+Vo²exp(–2μarcsin[h/so])/(bL)] ;

bL = ( gsinφ – СSρu²/[2m] – μg(1–cosφ) ) 2m/[СSρ] =
= 2mg/[СSρ] ( h/so – [μ/2] (h/so)² ) – u²

H = 2m/[СSρ]*
*[h/so] ln√[ 1 + Vo²exp(–2μarcsin[h/so])/( 2mg/[СSρ] ( h/so – [μ/2] (h/so)² ) – u² ) ] ;

Как мы видим, нам необходима максимальная скорость конькобежца u. Будем считать, что это так невнятно дано в виде начальной скорости конькобежца. Учтём ещё, что в нашем случае: arcsin[h/so] ≈ h/so, (h/so)² << 1 и exp(–2μarcsin[h/so]) ≈ 1–2μh/so :<br>
H = 2m/[СSρ] [h/so] ln√[ 1 + (1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) ] ;

Очевидно, что для того, чтобы «работающий ногами конькобежец» вообще мог достичь какой-либо наивысшей точки, нужно чтобы:

ln√[ 1 + (1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) ] > 0 ;

(1–2μh/so)/( 2 [h/so] mg/[СSρVo²] – 1 ) > 0 ;

2 [h/so] mg/[СSρVo²] > 1 ;

m/СS > ρVo²so/[2gh] ≈ 1.25*64*10/[ 2*9.8*0.5 ] ≈ 4000/49 ;

m/СS > 81.6 ;

Если считать, что CS = 1 м² , то масса конькобежца должна быть больше 82 кг, чтобы он, «продолжая работать ногами», вообще остановился.


* Допустим, что m/CS = 200 (тяжёлый и слабый), тогда:

H ≈ 2*200/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*200*9.8*0.5/[1.25*64*10] – 1 )]
≈ 16 ln√[ 1 + 0.998/1.45 ] ≈ 8.4 м.


* Допустим, что m/CS = 100 (средний параметр), тогда:

H ≈ 2*100/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*100*9.8*0.5/[1.25*64*10] – 1 )]
≈ 8 ln√[ 1 + 0.998/0.225 ] ≈ 13.5 м.


* Допустим, что m/CS = 82 (легко-пронырливый), тогда:

H ≈ 2*82/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*82*9.8*0.5/[1.25*64*10] – 1 )]
≈ 6.56 ln√[ 1 + 0.998/0.0045 ] ≈ 35 м.


* Допустим, что m/CS > 81.64 (всепреодолевающий на этом наклоне), тогда:

H ≈ 2*81.64/1.25 [1/20] ln√[ 1 + (1–0.04*1/20])/( 2*81.64*9.8*0.5/[1.25*64*10] – 1 )] ≈ бесконечность.

(7.5k баллов)
0

Если же конкобежец ПЕРЕСТАЁТ РАБОТАТЬ НОГАМИ, то тогда можно всё прикинуть через энергию:

mv²/2 = mgH + μmgs ;

v²/2 = Hg ( 1 + μ so/h ) ;

H = v²/[ 2g ( 1 + μ so/h ) ] ≈ 64/[ 2*9.8*1.4 ] ≈ 800/343 ≈ 2.33 м .

0

Да, из мухи - слон.

0

Ну, если бы было сказано, что «конькобежец ПЕРЕСТАЁТ работать (!) ногами», т.е. перестаёт производить работу, наращивая энергию движения – то была бы «муха». С указанием «ПРОДОЛЖАЯ работать (!) ногами» – никакой мухи нет. Есть непосредственно мамонт во всей красе. Решать ДАННУЮ в условии задачу так, как показано в комментариях нельзя.

0

Мораль осного решения (верного, надеюсь, по сути) заключается в том, что каждое (!) данное в условии физической задачи слово – важно. И случайное упоминание того или иного факта – может исказить задачу до неузнаваемости.

0

Нашла её в "распространя знания". Никому она не понравилась. И не случайно.

0

Столько за 23 балла?

0

Ну... :–) У меня просто есть планка. 20+

Где-то так я думаю.

А выше планки я себя не ограничиваю. Ограничивает сервис. Пришлось вырезать чуть-чуть. Точнее, пришлось вводную часть написать в комментах к заданию. 5000 символов – предел. Тут без вводной части как раз получилось 4995.

0

Как в аптеке у хорошего бухгалтера.