В прямоугольном треугольнике ABC из произвольной точки E катета AC опущен перпендикуляр...

0 голосов
65 просмотров

В прямоугольном треугольнике ABC из произвольной точки E катета AC опущен перпендикуляр ED на гипотенузу AB. DE=2, BC=4. Площадь треугольника ADE равна 5. Найдите площадь треугольника ABC.


Геометрия (15 баллов) | 65 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

треугольник АДЕ подобен треугольнику АВС как прямоугольные треугольники по острому углу А - общий,

площади подобных треугольников относятся как квадраты соответствующих сторон

ПлощадьАДЕ / площадь АВС = ДЕ в квадрате /ВС в квадрате

5 / площадь АВС = 4/16

площадь АВС = 5*16/4=20

(133k баллов)
0 голосов

Треугольники АВС и DЕА подобны по двум углам  ( угол А - общий и они имеют по углу 90 градусов) ,значит их площади относятся как коэффициент подобия в квадрате. Коэффициент к = 4/2 =2 .

S (ABC) / S (EDA) = 4

S (ABC) / 5 = 4

S (ABC) =4*5=20

 Ответ  20