Помогите решить логарифмическое неравенство. Вложение внутри.

0 голосов
33 просмотров

Помогите решить логарифмическое неравенство.
Вложение внутри.


image

Алгебра (15 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 

image0, \\ \frac{1}{4}\leq t\leq4, \\ \frac{1}{4}\leq 2^x\leq4, \\ 2^{-2}\leq 2^x\leq2^2, \\ -2\leq x\leq2, \\ " alt="\left \{ {{4^{x+1}-17\cdot2^x+4\leq0,} \atop {\log^2_{|x|}x^2+\log_2 x^2\leq8;}} \right. \\ \\ 4\cdot4^x-17\cdot2^x+4\leq0, \\ 4\cdot(2^x)^2-17\cdot2^x+4\leq0, \\ 2^x=t, \\ 4t^2-17t+4\leq0, \\ 4t^2-17t+4=0, \\ D=225, x_1=\frac{1}{4}, x_2=4, \\ a=4>0, \\ \frac{1}{4}\leq t\leq4, \\ \frac{1}{4}\leq 2^x\leq4, \\ 2^{-2}\leq 2^x\leq2^2, \\ -2\leq x\leq2, \\ " align="absmiddle" class="latex-formula">

image0, x\neq0, \\ 2^2+\log_2 x^2\leq8; \\ \log_2 x^2\leq4; \\ x^2\leq2^4; \\ x^2-16\leq0, \\ (x+4)(x-4)\leq0, \\ (x+4)(x-4)=0, \\ x_1=-4, x_2=4 \\ x\leq-4, x\geq4, \\ x\in\varnothing" alt="(2\log_{|x|}|x|)^2+\log_2 x^2\leq8; \\ x^2>0, x\neq0, \\ 2^2+\log_2 x^2\leq8; \\ \log_2 x^2\leq4; \\ x^2\leq2^4; \\ x^2-16\leq0, \\ (x+4)(x-4)\leq0, \\ (x+4)(x-4)=0, \\ x_1=-4, x_2=4 \\ x\leq-4, x\geq4, \\ x\in\varnothing" align="absmiddle" class="latex-formula">

(93.5k баллов)