Из пункта А в направлении пункта В вышел пешеход со скоростью 5 (целых) 5/6 км/ч ....

0 голосов
193 просмотров

Из пункта А в направлении пункта В вышел пешеход со скоростью 5 (целых) 5/6 км/ч . Одновременно с этим из пункта В в том же самом направлении вышел другой пешеход , скорость которого в 5/4 раза меньше скорости первого.
Через сколько часов , после начала движения , первый пешеход догонит второго Если расстояние между А и В равно 1,75 км ?


Математика (35 баллов) | 193 просмотров
Дан 1 ответ
0 голосов

Пусть все расстояние между пунктами А и В будет единица/

Пусть мотоциклист до места встречи ехал х часов. 
Велосипедист ехал  0,5+х ч ( выехал раньше мотоциклиста на 0,5 часа и на столько же дольше ехал)
Пешеход, соответственно, ехал до места встречи 2,5+х часов


Если принять расстояние от А до места встречи равным у, то

скорость мотоциклиста 
у:х (расстояние делим на время в пути) 
Пешехода у:( 2,5+х)
Велосипедиста у:( 0,5+х )
Продолжая движение, к пункту В они прибыли в разное время, проехав оставшееся расстояние  1-y км
Мотоциклист это расстояние преодолел за 
(1-y):(у:х) =(х-ху):у
Пешеход -
(1-y):{у:( 2,5+х)}=(2,5+х-2,5у-ху):у
Велосипедист 
(1-y):{у:( 0,5+х)}=(0,5+х-0,5у-ху):у
Время пешехода больше времени мотоциклиста на 1 час:
(2,5+х-2,5у-ху):у - (х-ху):у=1
2,5+х-2,5у-ху-х+ху=у
2,5=3,5у
у=5/7 всего расстояния ( от А до места встречи)
От места встречи до В проехали 

1-5/7=2/7
Время мотоциклиста - расстояние от места встречи делим на скорость. 
(2/7):(5/7:х)=2х:5 
Время пешехода 
(2х:5)+1
Время велосипедиста 
(2/7):{5/7:(х+0,5)}=(2х+1):5 
Разница времени между прибытием велосипедиста и пешехода 
(2х:5)+1-(2х+1):5=(2х+5-2х-1):5=4/5 часа
1/5 часа=12 мин. 
4/5 часа =48 минут.

Ответ: На 48 минут. 

----------------------------------------------------------------------------------------------------------------------------

Такие задачи можно  решать графически.  

Графический способ решения задач иногда даже проще и потому может быть предпочтительнее. 

------------------------------------------------------------------------------------------------- 

2. Из пункта A вышел пешеход, а из пункта B навстречу ему выехал одновременно велосипедист. После их встречи пешеход продолжал идти в B, а велосипедист повернул назад и тоже поехал в B. Известно, что пешеход пришёл в B на 2 часа позже велосипедиста, а скорость пешехода в 3 раза меньше скорости велосипедиста . Сколько времени прошло от начала движения до встречи пешехода и велосипедиста?  

 

Пусть расстояние между А и В будет единица. 
Пусть от В до места встречи х км
Скорость пешехода примем за у, тогда 
скорость велосипедиста 3у
От А пешеход до встречи шел (1-х):у часов
От В до встречи велосипедист шел х:3у часов, и это время одинаково:
(1-х):у =х:3у
Умножим обе части уравнения на 3у и получим
4х=3
х=3/4 всего пути
От места встречи до В 3/4 всего расстояния от А до В
Эти 3/4 расстояния пешеход шел 
(3/4):у =3/4у часов
а велосипедист  проехал за 
(3/4):3у =1/4у часов
3/4у-1/4у=2 часа
1/2у=2
4у=1
у=1/4 всего пути

От А до  места встречи пешеход шел

1-3/4=1/4 пути,

и это расстояние равно его скоростипоэтому он проходит его  за

1/4 : 1/4= 1 час,  

это же время, естественно, и велосипедист ехал от В до места встречи

(82 баллов)
0

это не та задача