Около круга радиуса 3 описана равнобедренная трапеция с острым углом 60 градусов. Найдите...

0 голосов
202 просмотров

Около круга радиуса 3 описана равнобедренная трапеция с острым углом 60 градусов. Найдите длину средней линии трапеции.


Геометрия (19 баллов) | 202 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны, то есть сумма оснований равна сумме боковых сторон, иначе в данную трапецию нельзя вписать окружность.
Высота нашей трапеции равна диаметру вписанной окружности, то есть 6.
В прямоугольном тр-ке, образованном боковой стороной и высотой трапеции, проведенной из конца верхнего основания, против угла 30° лежит катет, равный половине гипотенузы (боковой стороны). Тогда по Пифагору H²=х²-х²/4, где х - длина боковой стороны. Отсюда х = 4√3. Значит сумма боковых сторон и оснований = 8√3, а полусумма оснований - средняя линия трапеции равна 4√3.








(117k баллов)