2sin(7π/2 + x)*sinx = √3*cosx 2sin(π/2 + x)sinx = √3cosx 2cosxsinx - √3cosx = 0 cosx(2sinx - √3) = 0 1) cosx = 0 x₁ = π/2 + πk, k∈Z 2) 2sinx - √3 = 0 sinx = √3/2 x = (-1)^(n)*arcsin(√3/2) + 2πn, n∈Z x₂ = (-1)^(n)*(π/3) + 2πn, n∈Z