0\Rightarrow y \nearrow\\
\forall_{x\in(-\frac{1}{2},\frac{1}{2})}\ y'<0\Rightarrow y \searrow\\
" alt="y=-xe ^{1-2x^2} \\
y'=-e^{1-2x^2}+(-x\cdot e^{1-2x^2}\cdot(-4x))\\
y'=-e^{1-2x^2}+4x^2e^{1-2x^2}\\
y'=e^{1-2x^2}(4x^2}-1)\\
e^{1-2x^2}(4x^2}-1)=0\\
4x^2-1=0\\
4x^2=1\\
x^2=\frac{1}{4}\\
x=-\frac{1}{2} \vee x=\frac{1}{2}\\
\forall_{x\in(-\infty,-\frac{1}{2})}\ y'>0\Rightarrow y \nearrow\\
\forall_{x\in(-\frac{1}{2},\frac{1}{2})}\ y'<0\Rightarrow y \searrow\\
" align="absmiddle" class="latex-formula">