1)sin2x/cos2x-3sinx/cosx=0
2sinxcosx/2cos^2x-1 -3sinx/cosx=0
2sinxcos^2x+3sinx-6sinxcos^2x=0
sinx(2cos^2x+3-6cos^2x)=0
sinx=0
x=пn,n€z
2cos^2x+3-6cos^2x=0
-4cos^2x+3=0
-4cos^2x=-3
cos^2x=3/4
1+cos2x/2=3/4
1+cos2x=3/2
cos2x=1/2
2x=+-п/3+2пn
x=+-п/6+пn,n€z
2)sinx*sinx/cosx=cosx+tgx
sin^2x/cosx=cosx+sinx/cosx
sin^2x/cosx=cos^2x+sinx/cosx
sin^2x-cos^2x+sinx=0
sin^2x-1+sin^2x+sinx=0
sinx=t
2t^2+t-1=0
D=1-4*2*(-1)=9
t1=-1+-3/4=-1
t2=1/2
sinx=-1
x=-п/2+2пn,n€z
sinx=1/2
x=(-1)^n п/6+пn,n€z