Переместительное свойство умноженияОт перестановки множителей произведение не меняется.
a • b = b • a
Сочетательное свойство умноженияЧтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.
a • (b • c) = (a • b) • c
Переместительное и сочетательное свойства умножения позволяют сформулировать правило преобразования произведений.
При умножении нескольких чисел, их можно как угодно переставлять и объединять в группы.
Свойство нуля при умноженииЕсли в произведении хотя бы один множитель равен нулю, то само произведение будет равно нулю.
a • 0 = 0
0 • a • b • c = 0
Распределительное свойство умножения относительно сложенияЧтобы умножить сумму на число, можно умножить на это число каждое слагаемое и сложить полученные результаты.
(a + b) • c = a • c + b • c
Это свойство справедливо для любого количества слагаемых.
(a + b + с + d) • k = a • k + b • k + c • k + d • k
Распределительное свойство умножения относительно вычитанияЧтобы умножить разность на число, можно умножить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе.
В буквенном виде свойство записывается так:
(a - b) • c = a • c - b • c
Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.
Свойства деления
но примерно так