![image](https://tex.z-dn.net/?f=+%5Csqrt%7Bx%7D+-1%2B+%5Csqrt%7B2x%7D%2B6%3D6++++++++%0A%5C%5C%5C%0A+%5Csqrt%7Bx%7D+%2B+%5Csqrt%7B2x%7D%3D1%0A%5C%5C%5C%0Ax%2B2x%2B2+%5Csqrt%7Bx%5Ccdot2x%7D+%3D1%0A%5C%5C%5C%0A3x%2B2+%5Csqrt%7B2x%5E2%7D+%3D1%0A%5C%5C%5C%0A2%5Csqrt%7B2x%5E2%7D+%3D1-3x%0A%5C%5C%5C%0A1-3x%3E0%0A%5C%5C%5C%0Ax%3C+%5Cfrac%7B1%7D%7B3%7D+%0A%5C%5C%5C%0A8x%5E2%3D1-6x%2B9x%5E2%0A%5C%5C%5C%0Ax%5E2-6x%2B1%3D0%0A%5C%5C%5C%0AD_1%3D9-1%3D8%0A%5C%5C%5C%0Ax%3D3-%5Csqrt%7B8%7D+%3D3-2%5Csqrt%7B2%7D%0A%5C%5C%5C%0Ax+%5Cneq+3%2B%5Csqrt%7B8%7D+%3E+%5Cfrac%7B1%7D%7B3%7D+)
0
\\\
x< \frac{1}{3}
\\\
8x^2=1-6x+9x^2
\\\
x^2-6x+1=0
\\\
D_1=9-1=8
\\\
x=3-\sqrt{8} =3-2\sqrt{2}
\\\
x \neq 3+\sqrt{8} > \frac{1}{3} " alt=" \sqrt{x} -1+ \sqrt{2x}+6=6
\\\
\sqrt{x} + \sqrt{2x}=1
\\\
x+2x+2 \sqrt{x\cdot2x} =1
\\\
3x+2 \sqrt{2x^2} =1
\\\
2\sqrt{2x^2} =1-3x
\\\
1-3x>0
\\\
x< \frac{1}{3}
\\\
8x^2=1-6x+9x^2
\\\
x^2-6x+1=0
\\\
D_1=9-1=8
\\\
x=3-\sqrt{8} =3-2\sqrt{2}
\\\
x \neq 3+\sqrt{8} > \frac{1}{3} " align="absmiddle" class="latex-formula">
Ответ: