Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих...

0 голосов
43 просмотров

Докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается 1 раз, например, число 12 имеет два простых делителя: 2 и 3.)


Математика (12 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

Если данное число n — чётно, т.е. n = 2m, то искомыми числами будут k = 4m и l = 2m.

Пусть n — нечётно, p1, … ,ps — его простые делители и p — наименьшее нечетное простое число, не входящее во множество p1, … ,ps.
Тогда искомыми будут числа k = pn и l = (p – 1)n, так как, в силу выбора p, число p – 1 имеет своими делителями число 2, и, возможно, какие-то из чисел p1, … ,ps.

(216 баллов)