** гладкой горизонтальной поверхности покоится клин массой M. ** грань, составляющей угол...

0 голосов
118 просмотров

На гладкой горизонтальной поверхности покоится клин массой M. На грань, составляющей угол 30 градусов с горизонтом, падает шар массой m со скоростью v. В результате клин начинает двигаться. Определите скорость клина. Время удара мало, удар считать абсолютно упругим.


Физика (137 баллов) | 118 просмотров
0

Для данной задачи существует некорректное решение, бытующее на некоторых ресурсах. Некорректное решение заключается в том, что задачу пытаются решить сразу для трёх тел, исходя из законов сохранения. При этом используются четыре уравнения для пяти реальных переменных, что приводит к неопределённости (как и при любой попытке решения задачи мгновенного взаимодействия сразу трёх тел).

0

Неопределённость эта трактуется произвольным обнулением одной из переменных, что приводит к некорректному ответу, отличающемуся от приведённого в данном решении. Познакомиться ради любопытства с этим неправильным решением можно здесь:http://znanija.com/task/22134559

Дан 1 ответ
0 голосов
Правильный ответ

Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении.

Ещё раз, как именно клин после соударения с шаром будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина.

Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет знать», что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна.

Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом    \alpha = 30^o .    Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в    ctg{ \alpha }    раз больший, чем горизонтальный импульс и скорость.

Обозначим горизонтальную скорость клина, как –    V ,    тогда его вертикальная скорость    Vctg{ \alpha } .

Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как    v ,    а вертикальную, как    v_y .

Из закона сохранения импульса по горизонтали ясно, что:

mv = MV ;

v = \frac{M}{m} V ;

Из закона сохранения импульса по вертикальной оси найдём    v_y :

m v_o = MV ctg{ \alpha } - mv_y ,

v_y = \frac{M}{m} V ctg{ \alpha } - v_o ;

Из закона сохранения энергии найдём горизонтальную скорость клина:

mv_o^2 = mv^2 + mv_y^2 + MV^2 + M (Vctg{ \alpha })^2 ;

mv_o^2 = \frac{M^2}{m} V^2 + m ( \frac{M}{m} V ctg{ \alpha } - v_o )^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

mv_o^2 = \frac{M^2}{m} V^2 + \frac{M^2}{m}V^2 ctg^2{ \alpha } - 2MVv_o ctg{ \alpha } + mv_o^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

0 = \frac{M^2 V^2}{m \sin^2{ \alpha } } - \frac{2MVv_o}{ tg{ \alpha } } + \frac{MV^2}{ \sin^2{ \alpha } } ;

2 v_o \sin{ \alpha } \cos{ \alpha } = ( 1 + \frac{M}{m} ) V ;

V = v_o \frac{ \sin{ 2 \alpha } }{1+M/m} ;

Для угла    \alpha = 30^o :

V = \frac{ \sqrt{3} \ v_o }{2(1+M/m)} ;

В частности, при    m = M : \ \ \ V = v_o \frac{ \sin{ 2 \alpha } }{2} ;

В частности, при    image> M : \ \ \ V = v_o \sin{ 2 \alpha } ; " alt=" m >> M : \ \ \ V = v_o \sin{ 2 \alpha } ; " align="absmiddle" class="latex-formula">

Часть энергии не превратится ни в движение клина вдоль плоскости, ни в движение шара, а уйдёт вместе с вертикальным импульсом клина либо в колебания клина над поверхностью, либо во внутреннюю энергию (при неупругом взаимодействии клина с поверхностью). Что бы там с этой энергией далее не происходило – необходимо учесть эту энергию отдельно, чтобы не отнести её по ошибке к энергии горизонтального движения клина. После пояснения термина – «потеря энергии» в контексте данной задачи, можно эту потерю и посчитать.

Потеря энергии:    E_{lost} = \frac{M}{2} ( V ctg{ \alpha } )^2 = 2M ( \frac{ v_o \cos^2{ \alpha } }{1+M/m} )^2 ;

E_{lost} = \frac{ m v_o^2 }{2} \cdot \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 ;

E_{lost} = \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 E_o = \frac{4M}{m} (\frac{ cos^2{ \alpha } }{1+M/m} )^2 E_o ;

где    E_o    – начальная кинетическая энергия.

Для угла    \alpha = 30^o :

E_{lost} = \frac{9m}{4M(1+m/M)^2} E_o = \frac{9M}{4m(1+M/m)^2} E_o ;

При    m << M \ \ \ : \ \ \ E_{lost} \to 0 ;
(проверка очевидного предельного перехода)

При    m = M \ \ \ : \ \ \ E_{lost} = \frac{9}{16} E_o ;

При    image> M \ \ \ : \ \ \ E_{lost} \to 0 ; " alt=" m >> M \ \ \ : \ \ \ E_{lost} \to 0 ; " align="absmiddle" class="latex-formula">


image
image
image
image
image
(7.5k баллов)