Сечение куба плоскостью АВ1С даёт равносторонний треугольник, состоящий из диагоналей граней куба.
Сечение куба плоскостью,проходящей через точку М и параллельной плоскости АВ1С, это тоже равносторонний треугольник со сторонами, равными половинам диагоналей граней куба. которые обозначим буквой в.
Исходим из формулы площади равностороннего треугольника:
S = в²√3/4. Отсюда в = √(4S/√3) = √(4*(9√3)/√3) = 6 см.
Сторона куба а = √(2в²) = √(2*36) = 6√2 см.
Площадь поверхности куба равна:
S пов = 6а² = 6*(6√2)² = 6*72 = 432 см².