Модуль, абсолютная величина. К.Вейерштрасс (1841).
Модуль, абсолютная величина действительного числа х – неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = –х при х ≤ 0. Например, |7| = 7, |– 0,23| = –(–0,23) = 0,23. Модуль комплексного числа z = a + ib – действительное число, равное √(a2 + b2).
Считают, что термин "модуль" предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл "модулем" и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.