Описанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник. Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности? Теорема 1. ... В четырехугольник ABCD можно вписать окружность, если. Ab+CD=bc+ad. И обратно, если суммы противоположных сторон четырехугольника равны: Ab+CD=bc+ad ... Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис. O — точка пересечения биссектрис четырехугольника ABCD. AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD, то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д.