..............................

0 голосов
78 просмотров

..............................


image

Алгебра (19 баллов) | 78 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Используем свойство вершины параболы.
Если парабола задана уравнением вида у = ах²+вх+с, то хо = -в/2а, отсюда в = -2ахо, с= ахо²+уо.
Координаты вершины параболы заданы на рисунке:
хо = -1,  уо = 2.
Подставим эти значения:
в = -2а(-1) = 2а,
с= а(-1)²+2 = а+2.
Получаем квадратное уравнение у = ах²+2ах+а+2 = а(х²+2х+1)+2 =
= а(х+1)²+2.
Так как у параболы ветви вниз, то коэффициент а имеет отрицательный знак. Из представленных вариантов этому соответствует вариант (2):
у = 2-(х+1)² (здесь а = -1).

Можно проверить ещё одним свойством уравнения параболы: коэффициент с равен ординате точки пересечения графика с осью Оу.
По рисунку с = 1. Подставим: 1 = а+2. Отсюда а = 1-2 = -1, что подтверждает решение.

(309k баллов)
0 голосов

Последнее -(x-2)(x+1)

(8.0k баллов)