Периметр прямоугольного треугольника равен 36, а радиус вписанной в него окружности равен...

0 голосов
96 просмотров

Периметр прямоугольного треугольника равен 36, а радиус вписанной в него окружности равен 3,5. Чему равен радиус описанной окружности?


Геометрия (164 баллов) | 96 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Периметр треугольника равен P = a + b + c, радиус вписанной окружности в прямоугольный треугольник равен r = (a + b - c)/2, где а и b - катеты, c - гипотенуза

Составим систему из двух
выражений:
a + b + c = 36
(a + b - c) = 3,5

a + b + c = 36
a + b - c = 7
Выполни вычитание первого выражения на второе:
a - a + b - b + c + c = 36 - 7
2c = 29
c = 14,5
Значит, гипотенуза равна 14,5 см.
В прямоугольной треугольнике радиус описанной окружности равен половине гипотерузе. Значит, R = 1/2•14,5 м = 7,25 см.
Ответ: 7,25 см.

(145k баллов)