Треугольник АВС-равнобедренный с основанием АС, отрезок BD-его медиана, О-точка **...

0 голосов
79 просмотров

Треугольник АВС-равнобедренный с основанием АС, отрезок BD-его медиана, О-точка на медиане. На стороне АВ взята точка К, на стороне ВС-точка М, причем ВК=ВМ. Докажите, что ОКВ и ОМВ равны. СРОЧНО!!!


Геометрия (22 баллов) | 79 просмотров
Дано ответов: 2
0 голосов

Т.к. АВС равнобедренный BD-биссектриса
КВО=МВО (биссектриса)
ОВ-общая сторона
КВ=ВМ (по условию)
из этих трех утверждений следует равенство треугольников ОКВ и ОМВ

(1.2k баллов)
0 голосов

Рассмотрим треугольники ОКВ и ОМВ: угол КВО = углу ОВМ(т.к. ВD это медиана и биссекириса пр признакам равнобедренного треугольника); BK=BM(по условию);BO-общая;значит треугольник OKB = треугольнику OMB по первому признаку равенства треугольников.

(66 баллов)