![image](https://tex.z-dn.net/?f=%5Clog_%7B%5Cfrac16%7D%2810-x%29%2B%5Clog_%7B%5Cfrac16%7D%28x-3%29%5Cgeq-1%5C%5CO.D.3.%3A%5C%5C%5Cbegin%7Bcases%7D10-x%3E0%5C%5Cx-3%3E0%5Cend%7Bcases%7D%5CRightarrow%5Cbegin%7Bcases%7Dx%3C10%5C%5Cx%3E3%5Cend%7Bcases%7D%5CRightarrow+x%5Cin%283%3B%5C%3B10%29%5C%5C%5Clog_%7B6%5E%7B-1%7D%7D%2810-x%29%28x-3%29%5Cgeq-1%5C%5C-%5Clog_6%28-x%5E2%2B13x-30%29%5Cgeq-1%5C%5C%5Clog_6%28-x%5E2%2B13x-30%29%5Cleq1%5C%5C-x%5E2%2B13x-30%5Cleq6%5C%5C-x%5E2%2B13x-36%5Cleq0%5C%5Cx%5E2-13x%2B36%5Cgeq0%5C%5Cx%5E2-13x%2B36%3D0%5C%5CD%3D169-4%5Ccdot36%3D169-144%3D25%5C%5Cx_%7B1%2C2%7D%3D%5Cfrac%7B13%5Cpm5%7D2%5C%5Cx_1%3D4%2C%5C%3Bx_2%3D9)
0\\x-3>0\end{cases}\Rightarrow\begin{cases}x<10\\x>3\end{cases}\Rightarrow x\in(3;\;10)\\\log_{6^{-1}}(10-x)(x-3)\geq-1\\-\log_6(-x^2+13x-30)\geq-1\\\log_6(-x^2+13x-30)\leq1\\-x^2+13x-30\leq6\\-x^2+13x-36\leq0\\x^2-13x+36\geq0\\x^2-13x+36=0\\D=169-4\cdot36=169-144=25\\x_{1,2}=\frac{13\pm5}2\\x_1=4,\;x_2=9" alt="\log_{\frac16}(10-x)+\log_{\frac16}(x-3)\geq-1\\O.D.3.:\\\begin{cases}10-x>0\\x-3>0\end{cases}\Rightarrow\begin{cases}x<10\\x>3\end{cases}\Rightarrow x\in(3;\;10)\\\log_{6^{-1}}(10-x)(x-3)\geq-1\\-\log_6(-x^2+13x-30)\geq-1\\\log_6(-x^2+13x-30)\leq1\\-x^2+13x-30\leq6\\-x^2+13x-36\leq0\\x^2-13x+36\geq0\\x^2-13x+36=0\\D=169-4\cdot36=169-144=25\\x_{1,2}=\frac{13\pm5}2\\x_1=4,\;x_2=9" align="absmiddle" class="latex-formula">