В1
а) у = (1/6 х1/6 х⁸ + 8 ⁸√х³ -1⁸ + 8 ⁸√х³ -1)³
y' = 3(1/6 х⁸ + 8 ⁸√х³ -1)² * (1/6 х⁸ + 8 ⁸√х³ -1)' =
= 3(1/6 х⁸ + 8 ⁸√х³ -1)² * (4/3 x⁷ + 8*3/8 *x^-5/8)=
= 3( 3(1/6 х⁸ + 8 ⁸√х³ -1)² * (4/3 х⁷ + 3/⁸√х⁵)
б) у = (2х - tgx)/√(x³ +3x -2)
y' = ((2 - 1/Cos²x)*√(x³ +3x -2)-(2x - tgx)*1/2√(x³ +3x -2) * (3x² +3))/(х³+3х -2)
в) у = 2^arctgx * Sinx
y' = 2^arctgx * ln2 * 1/(1 + x²) * Sinx + 2^arctgx * Cosx
г) y = Ctglnx/3
y' = -1/Sin²lnx/3 * 3/x * 1/3 = -1/(xSin²lnx/3)
В4
а)y = (1/5 x⁵ - 3 ∛x⁴ - 4)⁵
y'= 5(1/5 x⁵ - 3 ∛x⁴ - 4)⁴ * (x⁴ - 3*4/3 x^1/3) = 5(1/5 x⁵ - 3 ∛x⁴ - 4)⁴ * ( x⁴-4∛x)
б) y = arcCos5x/(3 + 7x³)
y' = (-1/√(1-25x²) * 5 * (3 +7x³) - arcCos5x * 21x²)/(3 + 7х³)²
в) y=3^Cos3x * Sin3x
y' =3^Cos3x * ln3*(-Sin3x) * 3 *Sin3x + 3^Cos3x * 3Cos3x=
=-3^Cos3x(3ln3*Sin²3x - 3Cos3x)
г)y = tgln4x
y' = 1/Cos²ln4x * 1/4x * 4 = 1/(xCos²ln4x)