Цитата: "Средняя линия треугольника отсекает от данного треугольник, который подобен данному, а его площадь равна одной четвертой площади исходного треугольника".
Итак, площадь трапеции СDEB равна 3/4 площади основания (площадь основания минус 1/4 ее), то есть (3/4)*4√6 = 3√6дм².
Площадь сечения СFGB - площадь трапеции, отличающейся от трапеции СDEB только высотой. Ее высота h2 это гипотенуза О1Н треугольника ОО1Н и равна h2=h1/Cos30° = h1/(√3/2) = h1*2/√3 (так как угол при основании = 30°). Значит и площадь сечения равна Sc=S1*2/√3 = (3√6)*(2/√3) = 6√2дм²
Ответ: площадь сечения равна 6√2дм².
Решение а приложенном рисунке.