Дано:
ABCD - ромб ;
∠A =60° ;
MA ⊥ ( ABCD ) ;
MA =AB .
-----------------------
α = ∠ ( (MCD) , (MCB) ) -? (угол между плоскостями )
Длину стороны ромба обозначаем через a : AB =AD =BC =CD =a;
точка пересечения диагоналей BD и AC → O.
ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a ;
AC =2AO =a√3 .
---
MA ⊥ ( ABCD ) ⇒ MA ⊥ AB и MA ⊥ AD .
ΔMAB = ΔMAD и т.к. MA =AB =a ⇒ MB =MD =√(a² +a²) =a√2 ,
Следовательно
ΔMCD = ΔMCB ( по трем сторонам _ MC -общее) и из ΔMAC :
MC =√(MA²+ AC²) = √(a²+ 3a²) =2a .
---
MC линия пересечения плоскостей MCD и MCB .
Проведем в треугольнике ΔMCD высоту DK: DK ⊥ MC (K- основание высоты , K ∈ [ MC] ; MC² > MB² +DC² ⇒ ∠ MDC _тупой ) , точка K соединяем с вершиной B , очевидно BK ⊥ MC из ΔMCD = ΔMCB .
Таким образом ∠DKB = α искомый угол .
По теореме косинусов из ΔMCD :
MD² = MC² +CD² - 2MC*CD*cos∠MCD ⇔
2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒
sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4
KD =CD*sin∠MCD = (a√7) / 4 (из ΔKCD ).
---
из ΔDKO : sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7.
α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).
ответ : 2arcsin (2 /√7) . * * * 2arcsin (2√7 / 7 ) * * * .