Пусть а - ребро меньшего правильного тетраэдра, тогда площадь его полной поверхности можно найти по формуле S=4*a²√3/4=a²√3 (1).
Так как ребро большего тетраэдра больше в 4 раза, значит
(4a)²√3=80;
16a²√3=80;
a²√3=5;
a²=5√3/3.
Возвращаемся к формуле (1):
S=5√3/3*√3=5 (см³).
Можно рассуждать более просто: отношение площадей подобных фигур равно их коэффициенту подобности в квадрате (к²). Так как ребро второго тетраэдра меньше в 4 раза, значит его площадь полной поверхности в к²=4²=16 раз меньше первого: 80:16=5 (см²).
Ответ: 5 см².