Поскольку события независимы, а не взаимоисключающие, то нам надо рассмотреть вероятности двух наборов событий:
A,(не B),A,(не B),A(не B)
B,(не А)B,(не А)B,(не А)
Вероятность отсутствия события B=1-%вероятность_присутствия_события_B%=0.3
Вероятность отсутствия события A=1-%вероятность_присутствия_события_A%=0.7
Теперь мы рассчитываем вероятности этих наборов событий, зная их вероятность:
(0.3)^3*(0.3)^3=0.000729
(0.7)^3*(0.7)^3=0.117649
Нас спрашивают про вероятность появления или того набора, или другого:
0.117649+0.000729=0.118378.
Это и есть ответ.