1)
|5x+7|<8x-11<br>Раскрываем модуль, получаем систему неравенств:
5x+7<8x-11 3x>18 x>6
-5x-7<8x-11 13x>4 x>4/13 ⇒
x∈(6;+∞).
2)
a) (√(3x+1))²<(4-2x)² ОДЗ: 3x+1≥0 x≥-1/3<br>4-2x≥0
3x+1<16-16x+4x²<br>2x≤4
4x²-19x+15>0
x≤2
4x²-19x+15=0 D=121
x₁=1 x₂=3,75
(x-1)(x-3,75)>0
x≤2
-∞_____+_______1_______-_______3,75______+_______+∞
x∈(-∞;1)
Согласно ОДЗ:
x∈[-1/3;1).
b) (√(7-3x))²≥(x-1)² ОДЗ: 7-3x≥0 x≤7/3=2¹/₃
7-3x≥x²-2x+1
x²+x-6≤0
x²+x-6=0 D=25
x₁=2 x₂=-3
(x-2)(x+3)≤0
-∞________+_______-3________-________2_________+_________+∞
x∈[-3;2].
Согласно ОДЗ:
x∈(-∞;2].