основание AC равнобедренного треугольника abc равно 10. окружность радиуса 7, 5 с центром...

0 голосов
114 просмотров
основание AC равнобедренного треугольника abc равно 10. окружность радиуса 7, 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. найдите радиус окружности вписанной в треугольник abc

Геометрия (21 баллов) | 114 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решений у этой задачи несколько - есть посложнее и подлиннее  есть попроще и покороче.
Во вложении даны два рисунка. Один  для любителей  более сложных решений через подобие четырехугольников НАКО1 и КОМА  в рис. 1 
Более простое решение,  к нему  дан рисунок 2 
Соединим центры окружностей - вписанной в треугольник АВС и вневписанной. 
Точку С также соединим с этими центрами.  
Угол КСО прямой, т.к. равен сумме половин смежных углов ( центры окружностей лежат на биссектрисах углов). 
Треугольник КСО - прямоугольный. 
СН в нем -высота  и равна половине АС, т.е. равна 5 см  
Отрезок ОН равен радиусу вневписанной окружности и равен 7,5 
Высота прямоугольного треугольника, проведенная из вершины прямого угла,  есть среднее пропорциональное между отрезками, на которые делится 
гипотенуза этой высотой.
 Из этого следует равенство:
СН²=ОН·КН
25=7,5КН  
r =КН=25:7,5=3 ¹⁄₃


image
(228k баллов)