Исследовать знакочередующийся ряд: а) ** сходимость б) ** абсолютную и условную...

0 голосов
31 просмотров

Исследовать знакочередующийся ряд:
а) на сходимость
б) на абсолютную и условную сходимость


image

Математика (195 баллов) | 31 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) ряд сходится по признаку Лейбница

\lim_{n \to \infty} arcsin\frac{1}{ \sqrt{n} }=0

Последовательность (arcsin\frac{1}{ \sqrt{n} })^{\infty} _{n=1}
монотонно убывающая.

arcsin\frac{1}{ \sqrt{n+1} } \ \textless \ arcsin\frac{1}{ \sqrt{n} }

2) Ряд из модулей расходится, так как
arcsin\frac{1}{ \sqrt{n} }   эквивалентно  \frac{1}{ \sqrt{n} }

Ряд с общим членом \frac{1}{ \sqrt{n} }  расходится.

О т в е т. Данный ряд сходится условно

(414k баллов)