Решение
1) ∫ ⁴∨(2 -sinx)³cosxdx = - ∫ ⁴∨(2 -sinx)³d(2 - sinx) = - ∫(2 - sinx)³/⁴d(2 - sinx) =
= - (3/4)*[(2 - sinx)³/⁴⁺¹ / (3/4 + 1)] + C = - (3/7) * (2 - sinx)⁷/⁴ + C
2) ∫(x/3 - 3/x + 5e^x)dx = (1/3)* ∫(x)dx - 3*∫dx/x + 5∫(e^x)dx =
= x² / 6 +3* lnIxI + 5*(e^x) + C