1. Пусть имеем описанную и вписанную окружности некоторого правильного многоугольника. Его сторона АВ касается вписанной окружности и значит ее радиус перпендикулярен к стороне многоугольника и делит ее пополам в точке касания Н.
Тогда в прямоугольном треугольнике АОН ОН/АО=r/R=1/2. То есть катет равен половине гипотенузы. Это может быть только при угле ОАВ=30°.
Значит в равнобедренном треугольнике АОВ (АО=ОВ - радиусы) угол АОВ=120°.
Это центральный угол, значит он опирается на дугу, равную 120°.
То есть сторона многоугольника стягивает дугу 120°, а это 1/3 окружности. То есть многоугольник является треугольником.
Ответ: n=3.
2. Любой правильный многоугольник можно вписать в окружность и тогда его диагонали - это хорды этой окружности. По свойству пересекающихся хорд имеем:
MF*FN=KF*FE или в нашем случае, если KF=x: 6*8=х*(16-х).
х²-16х+48=0
х1=8+√(64-48)=12.
х2=8-4=4.
Ответ: KF=12, FE=4 или наоборот KF=4, FE=12.