Сторона квадрата равна 4см. Найти длину описанной окружности

0 голосов
56 просмотров

Сторона квадрата равна 4см. Найти длину описанной окружности


Геометрия (20 баллов) | 56 просмотров
Дано ответов: 2
0 голосов

Центр окружности лежит в центре квадрата. Проведите диагональ квадрата - она равна (корень из 2)*4 см. Если вам требуется найти диаметр, то это он и есть. Если радиус - разделите диаметр на два - получите 4/(корень из 2).

(30 баллов)
0 голосов

Радиусом окружности будет 1/2 диагонали квадрата. Эта диагональ - гипотенуза прямоугольного треугольника, катет которого - сторона квадрата = 4 см. Находим гипотенузу и дели ее пополам:

(\sqrt{4^{2}+4^{2}})/2 = 2\sqrt{2}

Длина окружности 2\piR: = 2*\pi*2\sqrt{2}=4\pi\sqrt{2}

(496 баллов)