Груз массой 40 кг касается вертикально стоящей пружины ** асфальте с коэффициентом...

0 голосов
81 просмотров

Груз массой 40 кг касается вертикально стоящей пружины на асфальте с коэффициентом жесткости 50 Н/м, не деформируя её. Через какое время он достигнет максимальной скорости при предоставлении ему свободы? При деформации пружина вертикальна. g=10 м/с кв.


Физика (24.1k баллов) | 81 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Численное значение ускорения свободного падения не играет никакой роли. И на Луне и на Марсе время достижения максимальной скорости было бы одинаковым. Отличалась бы только сама эта максимальная скорость. Поскольку, как хорошо известно, частота пружинных колебаний в продольном однородном потенциальном поле происходят с той же частотой, что и в его отсутствии. Каждую четверть периода гармонических колебаний – модуль скорости меняет своё значение от нулевого до амплитудного и наоборот.



БЕЗ ДОКАЗАТЕЛЬСТВА ФАКТА НЕИЗМЕННОМТИ ПЕРИОДА КОЛЕБАНИЙ:



t = \frac{T}{4} = \frac{1}{4} \cdot 2 \pi \sqrt{ \frac{m}{k} } = \frac{\pi}{2} \sqrt{ \frac{m}{k} } \ ;



t = \frac{\pi}{2} \sqrt{ \frac{m}{k} } \approx \frac{\pi}{2} \sqrt{ \frac{40}{50} } \approx 1.4    сек ;






ВТОРОЙ СПОСОБ с доказательством неизменности периода:



Будем для начала откладывать координату вниз от начального положения груза. На груз всё время будет действовать сила:



F = mg - kx = - ( kx - mg ) = - k ( x - \frac{mg}{k} ) \ ;



Теперь станем откладывать координату от точки    x_o = \frac{mg}{k}    и получим смещённую координату:



x_c = x - x_o \ ;    и теперь уже можем записать уравнение для силы так:



F = - k ( x - x_o ) = - k x_c \ ;



ma = - k x_c \ ;



mx'' = mx_c'' = - k x_c \ ;



Последнее – это уравнение гармонических колебаний с циклической частотой:



\omega = \sqrt{ \frac{k}{m} } \ ,    и периодом:



T = \frac{ 2 \pi }{ \omega } = 2 \pi \sqrt{ \frac{k}{m} } \ ,    нас интересует четверть-период, так что:



t = \frac{T}{4} = \frac{\pi}{2} \sqrt{ \frac{m}{k} } \approx \frac{\pi}{2} \sqrt{ \frac{40}{50} } \approx 1.4    сек ;






ТРЕТИЙ СПОСОБ с доказательством неизменности периода:



На груз всё время будет действовать сила:



F = mg - kx = - ( kx - mg ) = - k ( x - \frac{mg}{k} ) \ ;



ma = - k ( x - \frac{mg}{k} ) \ ;



mx'' = - k ( x - \frac{mg}{k} ) \ ;



m( x - \frac{mg}{k} )'' = - k ( x - \frac{mg}{k} ) \ ;



Это уравнение гармонических колебаний с циклической частотой:



\omega = \sqrt{ \frac{k}{m} } \ ,    и периодом:



T = \frac{ 2 \pi }{ \omega } = 2 \pi \sqrt{ \frac{k}{m} } \ ,    нас интересует четверть-период, так что:



t = \frac{T}{4} = \frac{\pi}{2} \sqrt{ \frac{m}{k} } \approx \frac{\pi}{2} \sqrt{ \frac{40}{50} } \approx 1.4    сек ;






ЧЕТВЁРТЫЙ СПОСОБ с доказательством неизменности периода:



Будем откладывать координату вниз от начального положения груза. По закону сохранения энергии:



- mgx + \frac{kx^2}{2} + \frac{mv^2}{2} = const \ ;



Возьмём производную от обеих частей уравнения:



- mgx' + kxx' + mvv' = 0 \ ;



mgv - kxv = mvx'' \ ;



mg - kx = mx'' \ ;



- k ( x - \frac{mg}{k} ) = mx'' \ ;



( x - \frac{mg}{k} )'' = - \frac{k}{m} ( x - \frac{mg}{k} ) \ ;



Это уравнение гармонических колебаний с циклической частотой:



\omega = \sqrt{ \frac{k}{m} } \ ,    и периодом:



T = \frac{ 2 \pi }{ \omega } = 2 \pi \sqrt{ \frac{k}{m} } \ ,    нас интересует четверть-период, так что:



t = \frac{T}{4} = \frac{\pi}{2} \sqrt{ \frac{m}{k} } \approx \frac{\pi}{2} \sqrt{ \frac{40}{50} } \approx 1.4    сек .




(7.5k баллов)
0

А что значат 5 желтых звездочек?

0

других у них для вас нет...

0

Я так и ничего не понял.

0

А что такое? Груз совершает гармонические колебания. Скорость ноль – через T/4 – скорость максимальна – ещё через T/4 – скорость опять ноль – потом ещё через T/4 – скорость снова максимальна и груз уже летит вверх – а после через T/4 груз в начальном положении.

0

Звёздочки дают возможность оценивать решение численно. В том числе и автору решения. Я свои решения ценю высоко :–)

0

Не понял про звездочки. С решением вроде хорошо. Спасибо! Есть разница нажать на первую или пятую?

0

Ну да. Конечно. Если нажать на первую – это будет соответствовать оценке решения "1", а если нажать на последнюю – то оценке "5"

0

А что я Вам там нащёлкал? Правильно или нет?

0

За такую простую задачу... 70 баллов? Что=то я расщедрился. Но... получил на 100. Спасибо!