Докажите ,что при любом натуральном n значение выражения. 1)17(n) -1 кратно 16 2)23( 2...

0 голосов
38 просмотров

Докажите ,что при любом натуральном n значение выражения.
1)17(n) -1 кратно 16
2)23( 2 n+1)+1 кратно 24
3)13(2n+1)+1 кратно 14
В скобках степень числа указана.


Алгебра (45 баллов) | 38 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1)
Т.к. один из множителей делится на 16, то и все выражение делится на 16.

2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.


3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.

(145k баллов)
0 голосов

1)(n+21)^3-(n+4)^3=(21+n-n-4)((n+21)^2+(n+21)(n+4)+(n+4)^2)=

17((n+21)^2+(n+21)(n+4)+(n+4)^2)(значит делится)

)б)(n+48)^3-(n+7)^3 кратно 41 аналогично раскладываем и получаем: 41*(...) делится.

(n+3)^3-(n-3)^3 кратно 18

=6*(n^2+6n+9+n^2-9+n^2-6n+9)=6*(3n^2+9)=18*(n^2+3) Делится

(132 баллов)