Решите уравнение ㏒₃x㏒₂₇ₓ=4
ОДЗ x > 0 log3 (x) * log 27 (x) = 4 log3(x) * log 3(x) / log3 (27) = 4 log3(x) * log3(x) /3 = 4 log3 ² (x) = 12 1) log3 (x) = 2√3 x = 3^(2√3) 2) log3 (x) = - 2√3 x = 3^( - 2√3) = 1/(3^(2√3)) Ответ 3^(2√3) 1/(3^(2√3))