Второй способ.
1) Если дискриминант квадратного уравнения равен 0, то уравнение имеет один корень.
D=(2a+1)²-4·(-a+6)=4a²+8a-23
a=(-8±12√3)/8
При а=(-2-3√3)/2 уравнение имеет корень х=(-1-3√3)/2∉[0;4]
При а=(-2+3√3)/2 уравнение имеет корень х=(-1+3√3)/2∈[0;4]
2) Если дискриминант квадратного трехчлена положителен, то уравнение имеет два корня x₁ и x₂ ( х₁
Для выполнения условия задачи, потребуем, чтобы х₁∈(0;4), х₂∉(0;4)
или х₂∈(0;4), х₁∉(0;4).
Это условие требует выполнения совокупности двух систем неравенств:
{f(0)<0</p>
{f(4)>0
или
{f(0)>0
{f(4)<0</p>
что равносильно неравенству f(0)·f(4)<0</p>
f(x)=x²-(2a+1)x-a+6
(-a+6)·(18-9a)<0⇒ a∈(2;6)</p>
При х=0 получаем, что a=6
При а=6 уравнение имеет вид х²-13х=0 и х=0 - единственный корень, принадлежащий отрезку [0;4]
При а=2 уравнение имеет вид х²-5х+4=0 уравнение имеет два корня х=1 и х=4, принадлежащих отрезку [0;4]
О т в е т. а∈{(3√3-2)/2}U(2;6].