![image](https://tex.z-dn.net/?f=2%29-4x%5E2%2B20x-25%3E0%5C%5C4x%5E2-20x%2B25%3C0%5C%5C%282x-5%29%5E2%3C0%5C%5Cx_1%3Dx_2%3D%5Cfrac%7B5%7D%7B2%7D%3D2%2C5%5C%5C%2B+%2B+%2B+%282%2C5%29%2B+%2B+%2B+%2B+%5C%5Cnet%5C%3B%5C%3B+reshenij%5C%5C3%29-x%5E2-7x-10+%5Cleq+0%5C%5Cx%5E2%2B7x%2B10+%5Cgeq+0%5C%5Cx_1%3D-5%2Cx_2%3D-2%5C%5C%2B+%2B+%2B%28-5%29-+-+-+-%28-2%29%2B+%2B+%2B+%2B%5C%5Cx%5Cin+%28-%5Cinfty%2C-5%29U%28-2%2C%2B%5Cinfty%29%5C%5C4%29x%5E2-6x%2B5+%5Cgeq+0%5C%5Cx_1%3D1%2Cx_2%3D5%5C%5C%2B+%2B+%2B+%2B%281%29-+-+-+-%285%29%2B+%2B+%2B+%2B%5C%5Cx%5Cin+%28-%5Cinfty%2C1%29U%285%2C%2B%5Cinfty%29)
0\\4x^2-20x+25<0\\(2x-5)^2<0\\x_1=x_2=\frac{5}{2}=2,5\\+ + + (2,5)+ + + + \\net\;\; reshenij\\3)-x^2-7x-10 \leq 0\\x^2+7x+10 \geq 0\\x_1=-5,x_2=-2\\+ + +(-5)- - - -(-2)+ + + +\\x\in (-\infty,-5)U(-2,+\infty)\\4)x^2-6x+5 \geq 0\\x_1=1,x_2=5\\+ + + +(1)- - - -(5)+ + + +\\x\in (-\infty,1)U(5,+\infty)" alt="2)-4x^2+20x-25>0\\4x^2-20x+25<0\\(2x-5)^2<0\\x_1=x_2=\frac{5}{2}=2,5\\+ + + (2,5)+ + + + \\net\;\; reshenij\\3)-x^2-7x-10 \leq 0\\x^2+7x+10 \geq 0\\x_1=-5,x_2=-2\\+ + +(-5)- - - -(-2)+ + + +\\x\in (-\infty,-5)U(-2,+\infty)\\4)x^2-6x+5 \geq 0\\x_1=1,x_2=5\\+ + + +(1)- - - -(5)+ + + +\\x\in (-\infty,1)U(5,+\infty)" align="absmiddle" class="latex-formula">