Сторона прямоугольника равна 8 см. и образует с диагональю угол 30 градусов. Найдите...

0 голосов
149 просмотров

Сторона прямоугольника равна 8 см. и образует с диагональю угол 30 градусов. Найдите площадь прямоугольника?


Математика (134 баллов) | 149 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Диагональ делит прямоугольник на два прямоугольных треугольника. Обозначим диагональ х. Катет, лежащий против угла в 30°, равен половине гипотенузы, т.е. х/2. По теореме Пифагора 
64+ \frac{x^2}{4} =x^2 \\ \frac{3x^2}{4} =64 \\ x= \sqrt{ \frac{64*4}{3} } = \sqrt{ \frac{256}{3} } = \frac{16}{ \sqrt{3} } \\ \\ \frac{x}{2} =\frac{8}{ \sqrt{3} } \\ S=8*\frac{8}{ \sqrt{3} } =\frac{64}{ \sqrt{3} } =\frac{64 \sqrt{3} }{ 3 }


image
(15.6k баллов)