Трапеция ABCD, диагонали пересекаются в точке E, ∠AED=120°, AC=16. Опустим перпендикуляр CF на AC; в прямоугольном треугольнике ACF катет CF равен половине гипотенузы AC⇒∠DAC=30°.
Из ΔAED⇒ ∠ADE=180°-120°-30°=30°⇒DE=AE, откуда следует равнобедренность трапеции и равенство ее диагоналей.
Если Вам кажется это не совсем очевидным, рассмотрите ΔBEC, подобный равнобедренному ΔAED и поэтому тоже равнобедренный.
А тогда AC=AE+EC=DE+EB=DB.
Ответ: 16