Lg100x * lg0.01x = 5

0 голосов
314 просмотров

Lg100x * lg0.01x = 5


Алгебра (89 баллов) | 314 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Lg (100*x)=lg 100+lg x=2+lg x
lg (0.01*x)=lg 0.01+lg x=-2+lg x
lg (100*x)*lg (0.01*x)=5;
(lg x + 2)*(lg x - 2)=5;
lg x = y  ;
y^2 - 2^2=5;
y^2=5+4
y^2=9 ;
y1=3
y2=-3
x1=10^3=1000;
x2=10^(-3)=0.001;
Ответ: x1=1000; x2=0.001.

(97 баллов)
0

Спасибо

0

Незачто

0

А в каком вы классе?

0 голосов

Lg100x = lg(10²*x) = 2+lgx,
lg0,01x = lg(10^(-2)*x) = -2+lgx.
Перемножим: -4-2lgx+2lgx+lg²x = 5.
Отсюда имеем lg²x = 9, lgx = √9 = +-3.
Получили 2 ответа: х = 10³ = 1000. х = 10^(-3) = 0,001.

(309k баллов)
0

Спасибо

0

Незачто