![image](https://tex.z-dn.net/?f=+%5Cfrac%7Bsin2x-2cos%5E2x%7D%7B+%5Csqrt%7Bsinx%7D+%7D+%3D0%2C+%5C+x%5Cin%5B2+%5Cpi+%3B+%5Cfrac%7B7+%5Cpi+%7D%7B2%7D+%5D%5C%5C%0Asinx+%5Cneq+0%2C+%5C+x+%5Cneq++%5Cpi+n%2C+%5C+n%5Cin+Z%5C%5Csinx%3E0%2C+%5C+x+%5Cin+%282+%5Cpi+%2B2+%5Cpi+n%3B3+%5Cpi+%2B2+%5Cpi+n%29+%5C%5Csin2x-2cos%5E2x%3D0%5C%5C%0A2sinxcosx-2cos%5E2x%3D0%2F%3A2sin%5E2x+%5Cneq+0%5C%5C%0Atgx-tg%5E2x%3D0%5C%5C%0Atgx%281-tgx%29%3D0%5C%5C%0Atgx%3D0%2C+%5C+x%3D+%5Cpi+k%2C+%5C+k%5Cin+Z+%5C%5C%0Atgx%3D1%5C%5C%0Ax%3D+%5Cfrac%7B+%5Cpi+%7D%7B4%7D+%2B+%5Cpi+m%2C+%5C+m%5Cin+Z%5C%5C%0Ax%5Cin+%5B2+%5Cpi+%3B+%5Cfrac%7B7+%5Cpi+%7D%7B2%7D+%5D%5C%5C%0A2+%5Cpi++%5Cleq++%5Cfrac%7B+%5Cpi+%7D%7B4%7D+%2B+%5Cpi+m+%5Cleq++%5Cfrac%7B7+%5Cpi+%7D%7B2%7D+%2F%3A+%5Cpi+%5C%5C%0A2+%5Cleq++%5Cfrac%7B1%7D%7B4%7D%2Bm++%5Cleq++%5Cfrac%7B7%7D%7B2%7D+%2F-+%5Cfrac%7B1%7D%7B4%7D+%5C%5C)
0, \ x \in (2 \pi +2 \pi n;3 \pi +2 \pi n) \\sin2x-2cos^2x=0\\
2sinxcosx-2cos^2x=0/:2sin^2x \neq 0\\
tgx-tg^2x=0\\
tgx(1-tgx)=0\\
tgx=0, \ x= \pi k, \ k\in Z \\
tgx=1\\
x= \frac{ \pi }{4} + \pi m, \ m\in Z\\
x\in [2 \pi ; \frac{7 \pi }{2} ]\\
2 \pi \leq \frac{ \pi }{4} + \pi m \leq \frac{7 \pi }{2} /: \pi \\
2 \leq \frac{1}{4}+m \leq \frac{7}{2} /- \frac{1}{4} \\" alt=" \frac{sin2x-2cos^2x}{ \sqrt{sinx} } =0, \ x\in[2 \pi ; \frac{7 \pi }{2} ]\\
sinx \neq 0, \ x \neq \pi n, \ n\in Z\\sinx>0, \ x \in (2 \pi +2 \pi n;3 \pi +2 \pi n) \\sin2x-2cos^2x=0\\
2sinxcosx-2cos^2x=0/:2sin^2x \neq 0\\
tgx-tg^2x=0\\
tgx(1-tgx)=0\\
tgx=0, \ x= \pi k, \ k\in Z \\
tgx=1\\
x= \frac{ \pi }{4} + \pi m, \ m\in Z\\
x\in [2 \pi ; \frac{7 \pi }{2} ]\\
2 \pi \leq \frac{ \pi }{4} + \pi m \leq \frac{7 \pi }{2} /: \pi \\
2 \leq \frac{1}{4}+m \leq \frac{7}{2} /- \frac{1}{4} \\" align="absmiddle" class="latex-formula">
Ответ: x=9п/4