(㏒₂4 + log₂x)² + (log₂2 + log₂x)² = 1
(2 + log₂x)² + (1 + log₂x)² = 1
4 + 4 log₂x + log²₂x + 1 + 2 log₂x + log²₂x - 1 = 0
2 log²₂x + 6 log₂x + 4 = 0
log₂x = t
t² + 3t + 2 = 0
t = -2 или t = -1
log₂x = -2 log₂x = -1
x = 2⁻² x = 2⁻¹
x = 1/4 x = 1/2
г)
log₆(5 + 6⁻ˣ) = x+1
6ˣ⁺¹ = 5 + 6⁻ˣ | * 6ˣ
6²ˣ⁺¹ = 5·6ˣ + 1
6ˣ = t
6·t² - 5t - 1 = 0
D = 25 + 24 = 49
t = 1 или t = -1/6
6ˣ = 1 6ˣ = 1/6
x = 0 x = -1