Углы AQR и BQP ** рисунке 89 равны и CP=PQ=QR=RC.Докажите,что AR=BP даю 50б

0 голосов
254 просмотров

Углы AQR и BQP на рисунке 89 равны и CP=PQ=QR=RC.Докажите,что AR=BP даю 50б


Геометрия (372 баллов) | 254 просмотров
0

Простите, но где рисунок?

0

найди другое мое задание с картинкой

Дан 1 ответ
0 голосов
Правильный ответ

Рассмотрим ∆RQC и ∆PQC.
RC = QR = QP = CP
CQ - общая сторона.
Значит, ∆RQC = ∆PQC - по III признаку.
Из равенства треугольников => ∠RQC = ∠PQC и ∠RCO = ∠PCO
Рассмотрим ∆ROQ и ∆POQ
∠RQC = ∠PQC
RQ = PQ
OQ - общая сторона
Значит, ∆ROQ = ∆POQ - по I признаку.
Из равенства треугольников => ∠QRO = ∠QPO.
Рассмотрим ∆RCO и ∆PCO.
RC = CP
CO - общая сторона
∠RCO = ∠PCO
Значит, ∆RCO = ∆PCO - по I признаку.
Из равенства треугольников => ∠CRP = ∠CPR.
∠ARQ = 180° - ∠QRP - ∠CRP.
∠BPQ = 180° - ∠RPQ - ∠CPR.
∠QPR = ∠RPQ.
∠CEP = ∠CPR.
Значит, ∠ARQ = ∠BPQ
Рассмотрим ∆ARQ и ∆BPQ.
∠ARQ = ∠BPQ
∠AQR = ∠BQR
RQ = QP
Значит, ∆ARA = ∆BPQ - по II признаку.
Из равенства треугольников => BP = AR.

(145k баллов)