Решите систему неравенств: (х-1)^2+(у+2)^2≥ 4 у>х-2

0 голосов
97 просмотров

Решите систему неравенств:
(х-1)^2+(у+2)^2≥ 4
у>х-2


Математика (48 баллов) | 97 просмотров
Дан 1 ответ
0 голосов

52x2-1-3*5(x+1)(x+2)-2*56(x+1)=0

Раскроем скобки в показателях степеней:
52x2-1-3*5x2+3x+2-2*56x+6=0
Вынесем 56x+6 за скобки:
56x+6*(52x2-6x-7-3*5x2-3x-4-2)=0
56x+6=0
52x2-6x-7-3*5x2-3x-4-2=0
Выражение 56x+6=0 не имеет решения, т.к. an≠0. Представим 52x2-6x-7 как 52(x2-3x-4)+1 и обозначим 5x2-3x-4 переменной t. Получим:
5t2-3t-2=0
По теореме Виета получим корни:
t1=1
t2=-2/5
Корень t2=-2/5 не будет удовлетворять уравнению, т.к. положительное число в любой степени больше нуля. Подставим вместо t - 5x2-3x-4
5x2-3x-4=1
Заметим, что 1=50
5x2-3x-4=50
Приравниваем показатели:
x2-3x-4=0
D=9+16=25, D>0, следовательно, уравнение имеет два действительных корня:
x1=(3-5)/2=-1
x2=(3+5)/2=4
Ответ: x=-1 и x=4.
Пример №2

5x/(√x+2)*0,24/(√x+2)=125x-4*0,04x-2

Напишем сразу ОДЗ: x≥0, т.к. D(√)=R+ U 0
Заметим, что 0,24/(√x+2)=5-1(4/(√x+2))=5-4/(√x+2); 125x-4=53(x-4)=53x-12; 0,04x-2=5-2(x-2)=54-2x
Обозначим √x переменной t>0
5t2/(t+2)*5-4/(t+2)=53t2-12*54-2t2
Отметим, что t≠0, т.к. деление на 0 не определено. При умножении складываем показатели степеней:
5(t2-4)/(t+2)=5t2-8
Приравниваем показатели степеней
(t2-4)/(t+2)=t2-8
(t2-4) по формуле квадрат разности будет (t+2)*(t-2)
Упростим:
(t+2)*(t-2)/(t+2)=t2-8
Получим:
t-2=t2-8
Перенесем все члены в правую часть уравнения:
t2-t-6=0
D=1+24=25, D>0, следовательно, уравнение имеет два действительных корня.
t1=(1+5)/2=3
t2=(1-5)/2=-2
t2=-2 не удовлетворяет уравнению, т.к. в случае 5(t2-4)/(t+2)=5t2-8 при t=-2 (t+2)=0, а деление на 0 не определено. Подставим вместо t - √x
√x=3
Возведем левую и правую часть уравнения в квадрат:
x=9
Ответ: х=9.

(18 баллов)
0

Помог