BO=4 OB1=5
AO^2 = AB^2 +BO^2 = 5^2 + 4^2 = 25+16 =41 ; AO =√41
CO^2 = AD^2 +BO^2 = 4^2 + 4^2 = 16+16 =32 ; CO =4√2
AC^2 = AB^2 +AD^2 = 5^2 + 4^2 = 25+16 =41 ; AC =√41
cosOAC = (AO^2+AC^2 -CO^2) / (2*AO*AC)=
= (41 +41-32) / (2*√41*√41)= 50 / (2*41) =25/41
sinOAC^2 = 1 - cosOAC^2 = 1 -(25/41)^2
sinOAC = 4/41*√66
площадь сечения AOC
S = 1/2 * AO*AC *sinOAC =1/2 *√41*√41*4/41*√66 = 2√66
ОТВЕТ 2√66