Решите показательное неравенство (с подробным решением) 2^(4x^2+|x|)*3^(-|x|)<=1

0 голосов
13 просмотров

Решите показательное неравенство (с подробным решением)
2^(4x^2+|x|)*3^(-|x|)<=1


Алгебра (20 баллов) | 13 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Домножим неравенство на 3^(|x|) (это можно делать, так как 3^(|x|)>0):
2^(4x^2+|x|)≤3^|x|. 
Прологарифмируем это неравенство по основанию 2>1; смысл неравенства при этом сохранится:
4x^2+|x|≤|x|log_2 3
(справа я вынес за знак логарифма показатель степени).
4|x|^2+|x|-|x|log_2 3≤0;
|x|(4|x|+1-log_2 3)≤0

1. x=0⇒неравенство принимает вид 0≤0 - верно⇒x=0 входит в ответ.
2. x≠0⇒|x|>0⇒на него можно неравенство сократить:

4|x|≤log_2 3 -1; |x|≤(log_2 3 - 1)/4;
x∈[-(log_2 3 -1)/4; (log_2 3-1)]. 
Поскольку x=0 входит в этот промежуток, это и будет ответ

Ответ: [-(log_2 3 -1)/4; (log_2 3-1)]. 

Замечание. При желании ответ можно записать в виде
[-(log_2 (3/2))/4;(log_2 (3/2))/4]

(64.0k баллов)