1
2sinπ/4*cos(π/4-x)=√2
2*√2/2*sin(x+π/4)=√2
sin(x+π/4)=1
x+π/4=π/2+2πn
x=-π/4+π/2+2πn
x=π/4+2πn,n∈z
2
2sinx+tgx*ctgx=0
2sinx+1=0
2sinx=-1
sinx=-1/2
x=-5π/6+2πn,n∈z
-π<-5π/6+2πn<π<br>-6<-5+12n<6<br>-1<12n<11<br>-1/12n=0⇒x=-5π/6
x=-π/6+2πn
-π<-π/6+2π<π<br>-6<-1+12n<6<br>-5<12n<7<br>-5/12n=0πx=-π/6
-5π/6+(-π/6)=-π