По теореме Виета x1 + x2 = 6/2 = 3; x1*x2 = 3/2 = 1,5.
a) x1*x2^5 + x1^5*x2 = x1*x2*(x1^4 + x2^4) =
= 1,5*(x1^4 + 2x1^2*x2^2 + x2^4 - 2x1^2*x2^2) =
= 1,5*((x1^2 + x2^2)^2 - 2*(1,5)^2) =
= 1,5*((x1^2 + 2x1*x2 + x2^2 - 2x1*x2)^2) - 2*2,25) =
= 1,5*( [ (x1+x2)^2 - 2*1,5 ]^2 - 4,5) = 1,5*((3^2 - 3)^2 - 4,5) =
= 1,5*(6^2 - 4,5) = 1,5*(36 - 4,5) = 1,5*31,5 = 47,25
b) x1^4 + x2^4 = x1^4 + 2x1^2*x2^2 + x2^4 - 2x1^2*x2^2 =
(x1^2 + x2^2)^2 - 2*(1,5)^2 = (x1^2 + 2x1*x2 + x2^2 - 2x1*x2)^2) - 2*2,25 =
[ (x1+x2)^2 - 2*1,5 ]^2 - 4,5 = (3^2 - 3)^2 - 4,5 = 36 - 4,5 = 31,5
c)